🤖
@qwertyvipul | code
  • Code
  • DSA
    • Disjoint Set
    • Segment Tree
    • Bit Operations
    • Binary Exponential
    • Kadane's Algorithm
    • Modulus Multiplicative Inverse
  • Quick Notes
    • Design Patterns
    • System Design
    • React.js
  • LeetCode With JavaScript
Powered by GitBook
On this page
  • Code
  • Optimized
  1. DSA

Disjoint Set

Code

class UnionFind:
    def __init__(self, size):
        self.root = [i for i in range(size)]

    def find(self, x):
        if x != self.root[x]:
            self.root[x] = self.find(self.root[x])
        return self.root[x]

    # The union function with union by rank
    def union(self, x, y):
        rootX = self.find(x)
        rootY = self.find(y)
        if rootX != rootY: self.root[rootY] = rootX

Optimized

class UnionFind:
    def __init__(self, size):
        self.root = [i for i in range(size)]
        # Use a rank array to record the height of each vertex, 
        # i.e., the "rank" of each vertex.
        # The initial "rank" of each vertex is 1, because each of them is
        # a standalone vertex with no connection to other vertices.
        self.rank = [1] * size

    # The find function here is the same as that in the disjoint set 
    # with path compression.
    def find(self, x):
        if x == self.root[x]:
            return x
        self.root[x] = self.find(self.root[x])
        return self.root[x]

    # The union function with union by rank
    def union(self, x, y):
        rootX = self.find(x)
        rootY = self.find(y)
        if rootX != rootY:
            if self.rank[rootX] > self.rank[rootY]:
                self.root[rootY] = rootX
            elif self.rank[rootX] < self.rank[rootY]:
                self.root[rootX] = rootY
            else:
                self.root[rootY] = rootX
                self.rank[rootX] += 1

    def connected(self, x, y):
        return self.find(x) == self.find(y)
        
# Test
uf = UnionFind(10) # 1-2-5-6-7 3-8-9 4
edges = [[1, 2], [2, 5], [5, 6], [6, 7], [3, 8], [8, 9]]
for u, v in edges: uf.union(u, v)
print(uf.connected(1, 5))  # true
print(uf.connected(5, 7))  # true
print(uf.connected(4, 9))  # false
# 1-2-5-6-7 3-8-9-4
uf.union(9, 4)
print(uf.connected(4, 9))  # true

PreviousDSANextSegment Tree

Last updated 1 year ago